

FDM HIPS

FDM Thermoplastic Filament

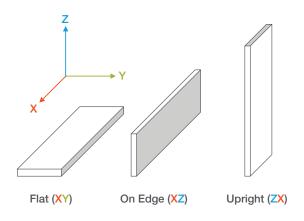
Overview

FDM® HIPS (high-impact polystyrene) is a low-cost, general-use 3D printing thermoplastic. It offers similarities to ABS but has high impact resistance making it suitable for printing lower-requirement jigs, fixtures and prototypes at a reduced cost.

Contents:

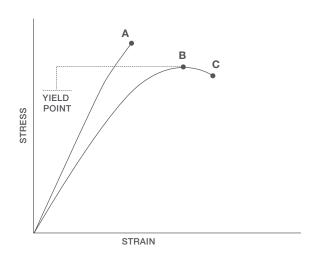
Ordering Information.	3
Mechanical Properties	.3

Ordering Information


Part Number	Description
Filament Canisters	
355-70000	HIPS, 92 cu in Plus
355-70080	SUP1500B, 92 cu in Plus
Printer Consumables	3
511-10401	T16 tip
511-10301	T12 tip
325-00300	Low Temperature build sheet, 0.02 x 26 x 38 in. (0.51 x 660 x 965 mm)

Mechanical Properties

Samples were printed with 0.010 in. (0.254 mm) layer height on the Fortus 450mc. For the full test procedure please see the <u>Stratasys Materials Test Procedure</u> on <u>www.stratasys.com</u>.


Print Orientation

Parts created using FDM are anisotropic as a result of the printing process. Below is a reference of the different orientations used to characterize the material.

Tensile Curves

Due to the anisotropic nature of FDM, tensile curves look different depending on orientation. Below is a guide of the two types of curves seen when printing tensile samples and what reported values mean.

- A = Tensile at break, elongation at break (no yield point)
- B = Tensile at yield, elongation at yield
- C = Tensile at break, elongation at break

		XZ Orientation ¹	ZX Orientation ¹
ensile Properties: ASTI	M D638		
Yield Strength	MPa	26.0 (0.36)	23.5 (0.36)
	psi	3770 (52)	3410 (52)
longation @ Yield	%	1.6 (0.030)	1.5 (0.030)
Strength @ Break	MPa	19.6 (0.46)	20.3 (0.69)
	psi	2840 (67)	2950 (100)
ongation @ Break	%	8.7 (0.69)	2.8 (0.44)
N.A	GPa	1.98 (0.013)	1.93 (0.035)
odulus (Elastic)	ksi	287 (1.9)	281 (5.1)
exural Properties: AST	M D790, Procedure A		
ak Stress	MPa	50.8 (0.54)	44.0 (1.2)
ak Stress	psi	7370 (78)	6380 (170)
ex Yield Strain	%	3.5 (0.18)	3.2 (0.19)
Modulus	GPa	2.24 (0.028)	1.85 (0.043)
odulus	ksi	325 (4.0)	268 (6.2)
npact Properties: ASTI	M D256, ASTM D4812		
otobod	J/m	74.7 (3.7)	44.6 (5.3)
Notched	ft*lb/in.	1.40 (0.070)	0.835 (0.10)
anatahad	J/m	827 (190)	132 (11)
Unnotched	ft*lb/in.	15.5 (3.5)	2.47 (0.20)

¹ Values in parenthesis are standard deviations.

USA - Headquarters

7665 Commerce Way Eden Prairie, MN 55344, USA +1 952 937 3000

ISRAEL - Headquarters

1 Holtzman St., Science Park PO Box 2496 Rehovot 76124, Israel +972 74 745 4000

stratasys.com

ISO 9001:2015 Certified

EMEA

Airport Boulevard B 120 77836 Rheinmünster, Germany +49 7229 7772 0

ASIA PACIFIC

7th Floor, C-BONS International Center 108 Wai Yip Street Kwun Tong Kowloon Hong Kong, China + 852 3944 8888

GET IN TOUCH.

www.stratasys.com/contact-us/locations

